LoRa Gateway S281

Wireless Data Acquisition RS485 Transparent Transmission

S281 User <u>Manual</u>

Version: V1.1

Issue Date: 2022-11-23

Shenzhen Beilai Technology Co., Ltd. Website: https://www.bliiot.com/

Preface

Thanks for choosing BLIIoT Wireless Data Acquisition System LoRa Gateway S281. Reading this manual with full attention will help you quickly learn device functions and operation methods.

Copyright

This user manual is owned by Shenzhen Beilai Technology Co., Ltd. No one is authorized to copy, distribute or forward any part of this document without written approval of BLIIoT. Any violation will be subject to legal liability.

Disclaimer

This document is designed for assisting user to better understand the device. As the described device S281 is under continuous improvement, this manual may be updated or revised from time to time without prior notice. Please follow the instructions in the manual. Any telecommunication service network issues or damages caused by wrong operation will be beyond warranty.

Revision History

Revision Date	Version	Description	Owner
July 28, 2021	V1.0	Initial Release	HEX
November 23, 2022	V1.1	BL280 change to S281	

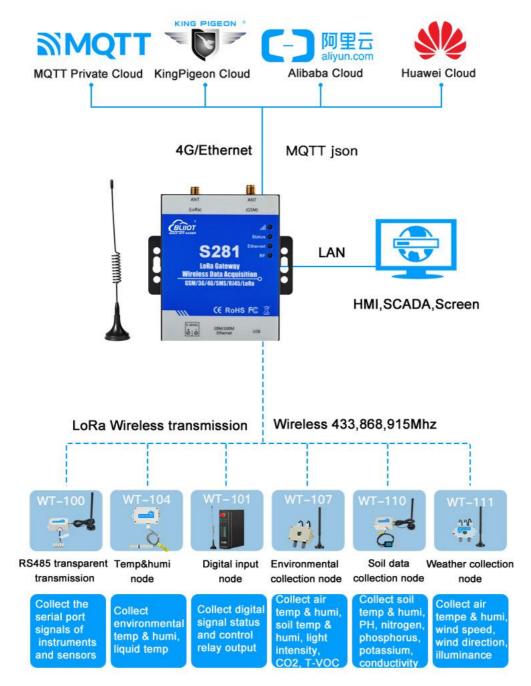
Contents

1	Product Introduction	5
	1.1 General Introduction	5
	1.2 Typical Application	6
	1.3 Safety Introduction	7
	1.4 Packing List	7
	1.5 Features	9
	1.6 Technical Parameters	10
2	Hardware Introduction	11
	2.1 Outline Dimension	11
	2.2 LED Indicator	12
	2.3 Interface Definition	13
	2.4 Ethernet Port	13
	2.5 SIM Card Slot	. 13
	2.6 Power Switch/Upgrading Switch	14
	2.7 External Antenna	14
	2.8 USB Port	15
3	Gateway Mounting	15
	3.1 Wall-Mounting	15
	3.2 DIN-Rail Mounting	16
4	Parameter Configuration	16
	4.1 Preparation for Configuring the Gateway	16
	4.1.1 Install USB Driver	. 16
	4.1.2 Search for Port Number	16
	4.1.3 Login to Configuration Software	17
	4.2 Basic Settings	19
	4.3 Ethernet & Cellular Network Configuration	20
	4.4 Cloud Platform	20
	4.5 Wireless Node Configuration	. 24
	4.6 Wireless Node Management	26
	4.7 Historical Record	27
	4.8 Alarm Record	27
5	SMS Command	. 28

6 Communication Protocol	29
6.1 Modbus RTU Protocol	29
6.2 Modbus TCP Protocol	31
6.3 MQTT Protocol	34
7 Firmware Upgrading	34
8 Warranty Term	34
9 Technical Support	34
10 Appendix A SMS Command List	35
11 Appendix B Register Address	37
12 Appendix C MQTT Application	40
13 Appendix D LoRa Node Introduction	44
WT100 (RS485 Transparent Transmission Node)	44
WT101(4 Digital Input Data Collection Node)	45
WT102 (2 Relay Output Control Node)	46
WT103 (AM2301 Temperature & Humidity Data Collection Node)	47
WT104 (AM2401 Temperature & Humidity Data Collection Node)	47
WT105 (DS18B20 Temperature Data Collection Node)	48
WT106 (PT100 Temperature Data Collection Node)	49
WT107 (Multiple Environmental Data Collection Node)	50
WT108 (Soil PH Value Collection Node)	50
WT109 (Soil EC Data Collection Node)	51
WT110 (Soil Moisture Content Data Collection Node)	52
WT111 (Multiple-Parameter Collection Node)	53

1 Product Introduction

1.1 General Introduction


Wireless Data Acquisition System S281 is based on LoRa RF technology. It's mainly used for collecting multiple environmental data distributed in different long range areas and transparent data transmission from device to cloud. With LoRa modulation technology, it's capable of realizing multiple IO device monitoring, collecting data of temperature & humidity, light intensity, CO2, wind direction & speed and soil conditions.

LoRa communication range is up to 2KM.Built-in LoRa chip SX1278 and GSM/GPRS/3G/4G/RJ45 module work together to achieve remote monitoring and control by sending sensor, PLC, smart meter and other device data to cloud or mobile phone via SMS/2G/3G/4G/Ethernet. Huge field wiring cost will be saved

This wireless data acquisition system comprised of 2 parts, LoRa Gateway S281 and LoRa Nodes. Nodes connect senor, PLC and other devices. The collected data is sent to gateway. Mutual communication between PLC and cloud is done through wireless RF technology. Alarm threshold can be set in gateway so that alarm events can be recorded.

Application Topology APPLICATION

1.2 Typical Application

- Smart greenhouse data collection and monitoring
- Smart orchard data collection and monitoring

- Smart crop land data collection and monitoring
- Smart Breeding Temp& Humi data collection and monitoring
- Smart factory temp & humi data collection and monitoring
- ATM, POS, PLC and DAQ device data transmission
- Smart grid data transmission
- Smart transportation data transmission
- Industrial automation data transmission
- Environmental protection data transmission
- Weather station data collection and monitoring
- Agriculture, Aquaculture and coal mine site data transmission
- Smart agriculture, smart fire protection, smart city, smart building, etc
- Other distributed site data collection and monitoring

1.3 Safety Introduction

Safety Notice:

Please don't use this device in the place where mobile phone is prohibited.

Wireless Interference

Please avoid wireless interference to impact GSM/GPRS/3G/4G network.

1.4 Packing List

Please make sure below parts are included in the package before installing the device.

1x S281 LoRa Gateway

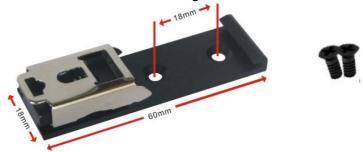
• 1x 2 pin 3.5mm Female connector

1x mini_USB cable

1x LoRa Antenna

• 1x 2G/3G/4G SMA Cellular Network Antenna (AT-25)

• 1x Power Adaptor (12VDC/2A)



1x User Manual (Soft Copy)

Note: If any of the above parts are missing, please contact BLIIoT sales team.

Optional Part (Must order it separately)

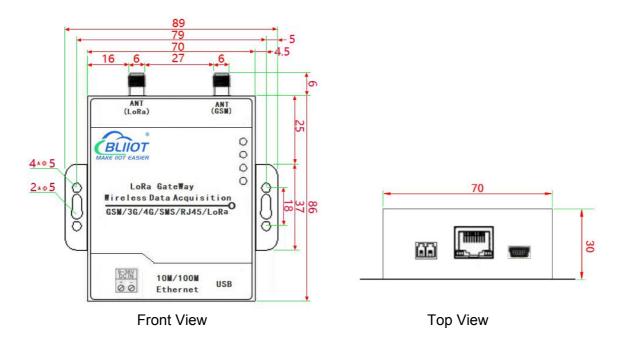
35mm DIN Rail Mounting Bracket

1.5 Features

- ➤ Embedded ARM®CortexTM-M 32-bit RISC core real-time operation system, software and hardware watchdog to avoid false deadlock
- ➤ Support 9~36VDC power supply with reverse wiring protection design
- Modular design, only communication module change to upgrade GSM/3G/4G network
- Support remote device restart and configuration with SMS
- > Device parameters can be set easily with local configuration software, SMS and APP
- Support MQTT, Modbus TCP, Modbus RTU, transparent transmission and custom handshake protocol to actively connect server & automatically re-connect server if network disconnected
- Support Alibaba Cloud, HUAWEI Cloud, King Pigeon Cloud and other clouds with standard Modbus MQTT protocols
- Ethernet port has transformer isolator with 2KV electromagnetic isolation
- > Support long range wireless data transmission with data collection and device control nodes
- Support multiple environmental data collection, max 12 types of different nodes can collect data simultaneously
- > Automatic offline re-connection function ensure nodes and gateway are connected permanently
- Support real-time monitoring node battery usage to avoid device data loss

1.6 Technical Parameters

Item	Parameter	Description
	Power Voltage	9~36V DC
Power Supply	Power Consumption	Normal: 130mA@12V, Max 150mA@12V
	Protection	Reverse wiring protection, ESD air: 15KV, surge: 4KV
	Backup Battery	3.7V/900mAh
USB	USB	1 x mini USB
	Spec	1 x RJ45,10/100Mbps
Ethernet Port	Protection	ESD contact: 8KV , surge: 4KV (10/1000us)
	Protocol	Modbus RTU, Modbus TCP, MQTT
-	Communication frequency	402MHz-500MHz, optional 860-930MHz
-	City communication range	1km
LoRa Parameter	Visible communication range	2km
	Transmitting power	<24dBm
-	Receiving sensitivity Air communication speed	<-120dBm
	•	1.0Kbps
	2G	GSM/EDGE: 850,900,1800,1900MHz
	3G	GSM/EDGE: 850,900,1800,1900MHz
		UMTS: 850,900,2100MHz
		GSM/EDGE: 900,1800MHz
	4G (E version)	WCDMA: B1,B5,B8
	TO (E version)	FDD: B1,B3,B5,B7,B8,B20
		TDD: B38,B40,B41
		GSM/EDGE: 850,900,1800MHz
	4C (Allyeraion)	WCDMA: B1,B2,B5,B8
	4G (AU version)	FDD: B1,B2,B3,B4,B5,B7,B8,B28
		TDD: B40
		WCDMA: B2,B4,B5
Cellular Network	4G (A version)	FDD: B2,B4,B12
	4G (V version)	FDD: B4,B13
		WCDMA: B1,B3,B8,B18,B19, B26
	4G (J version)	FDD: B2,B4,B12
	(6 (6 (6)))	TDD: B41
		GSM/EDGE: 900,1800MHz
		WCDMA: B1,B8
	4G (CE version)	TD-SCDMA: B34,B39
	40 (OE Version)	FDD: B1,B3,B8
-	Protocol	TDD: B38,B39,B40,B41 Modbus RTU, Modbus TCP, MQTT
		Standard flip cover, support 1.8V/3V SIM/UIM
	SIM/UIM Card slot	card, built-in 15KV ESD protection
		IPV4, TCP/UDP, DHCP, DNS, Modbus RTU,
Software	Network Protocol	Modbus TCP, MQTT
Parameter	la di a da a	Cellular Network Signal, Status, Ethernet and
	Indicator	LoRa Radiao Frequency



	User Configuration	PC software configuration, support WIN XP, WIN 7, WIN 8 and WIN 10
	Node QTY	Support max 50 nodes
	Node Type	Suport WT100-WT111, max 12 different types
	Data Transmission	Support Transparent Transmission
	SMS Command	Support SMS Commands
	Login Package	Support custom login package
	Heartbeat Package	Support custom heartbeat package
	Storage	Max 2000 historical records & 500 alarm records
	MTBF	≥100,000 hours
		EN 55022: 2006/A1: 2007 (CE &RE) Class B
		IEC 61000-4-2 (ESD) Level 4
		IEC 61000-4-3 (RS) Level 4
Certification	EMC	IEC 61000-4-4 (EFT) Level 4
		IEC 61000-4-5 (Surge)Level 3
		IEC 61000-4-6 (CS)Level 4
		IEC 61000-4-8 (M/S) Level 4
	Others	CE, FCC, ROHS, 3C
Environment	Working Environment	-45∼85℃, 5∼95%RH
Environment	Storage Environment	-45∼105℃, 5∼95%RH
Others	Case Material	Metal
	Size	88mm×75mm×30mm (L*W*H)
	Protection Grade	IP30
	Net Weight	235g
	Mounting	Wall-Mounting, DIN Rail Mounting

2 Hardware Introduction

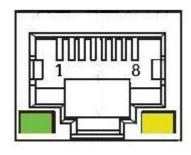
2.1 Outline Dimension

2.2 LED Indicator

LED Indicator				
No.	No. Item Color Status Description			
1	11	Red	Fast flickering Slow	2G: No signal (0.8s off, 0.2s on) 3G/4G: No signal (1s off, 0.8s on) 2G: Normal (2s off, 0.2s on)

Shenzhen Beilai Technology Co., Ltd.

			flickering	3G/4G: Normal (0.2s off, 1s on)
			Off	Device fault
2 Status	Status	Red	Stead On	External Power Supply is normal
	Status		Off	External power supply is lost
3 Ethernet	Red	Flickering	Ethernet port has data transmission	
	Ellielliel	Reu	Off	Ethernet port has no data transmission
4 RF	DE	Red	Flickering	LoRa RF has data transmission
	KF		Off	LoRa RF has no data transmission


2.3 Interface Definition

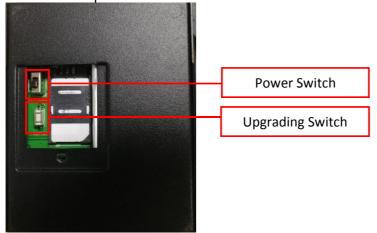
Power Supply

Power Supply			
No. Item Description			
1	In+	Positive Pole of Power Input	
2	In-	Negative Pole of Power Input	

2.4 Ethernet Port

	Ethernet Port Introduction				
No.	Color	Item	Description		
1	Orange white	TX+	Positive of Transmitting		
2	Orange	TX-	Negative of Transmitting		
3	Green white	RX+	Positive of Receiving		
4	Blue	Data+	Positive of two-way data		
			communication		
5	Blue white	Data-	Negative of two-way data		
			communication		
6	Green	RX-	Negative of Receiving		
7	Brown white	Data+	Positive of two-way data		
			communication		
8	Brown	Data-	Negative of two-way data		
			communication		

2.5 SIM Card Slot


S281 support 1.8V/3V SIM card

2.6 Power Switch/Upgrading Switch

Make sure device is powered off before inserting SIM card. Follow Open direction to push SIM card slot and then place the card into it.

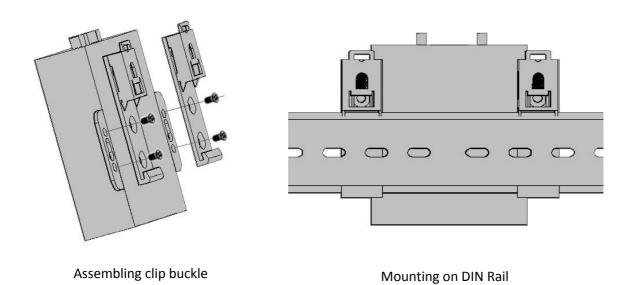
2.7 External Antenna

S281 has 1 LoRa antenna and 1 GSM/3G/4G cellular network antenna

2.8 USB Port

mini USB port is used to connect S281 to PC for configuring parameters and upgrading firmware

3 Gateway Mounting


This gateway supports horizontal placement on the table, wall-mounting and DIN Rail mounting.

3.1 Wall-Mounting

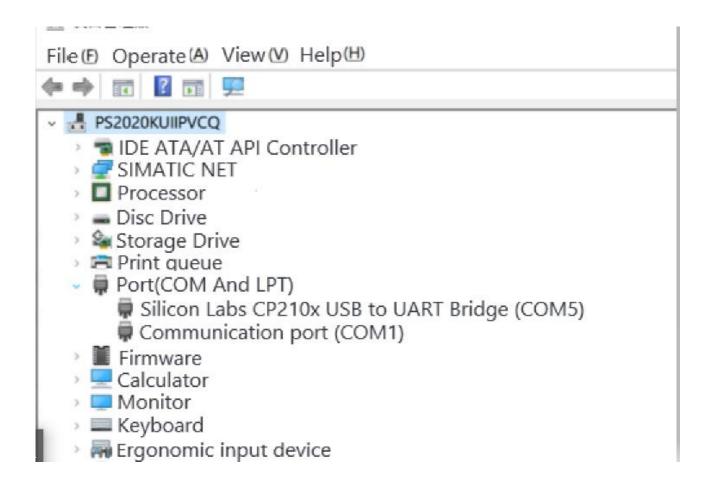
3.2 DIN-Rail Mounting

4 Parameter Configuration

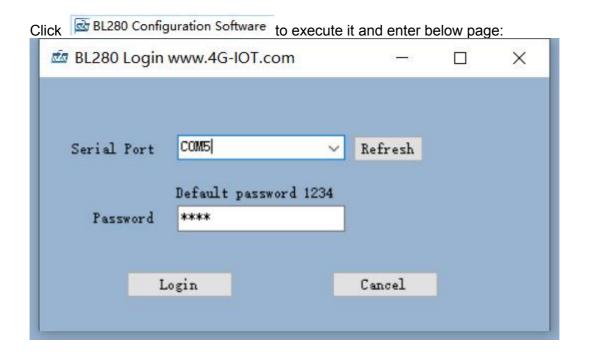
S281 configuration software has user-friendly interface. Just connect S281 Gateway (hereafter referred to as Gateway) to PC with USB cable to set parameters, export files and upgrade firmware.

4.1 Preparation for Configuring the Gateway

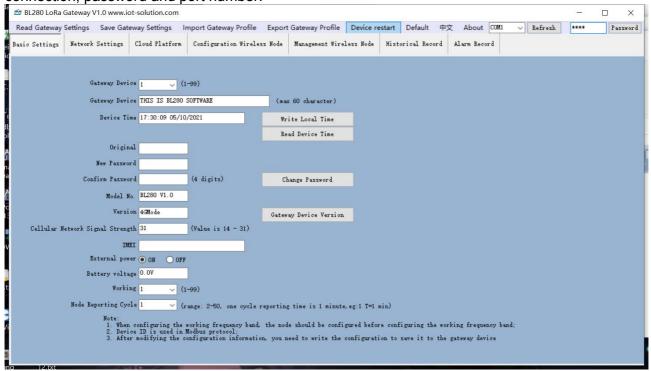
4.1.1 Install USB Driver


Skip this process if USB driver is installed already

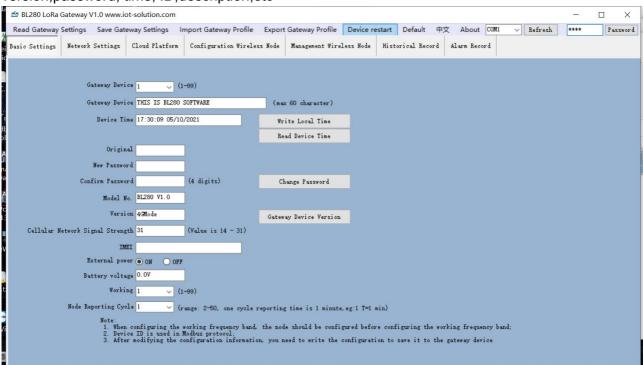
Download S281 configuration software and USB driver from BLIIoT website: www.iot-solution.com
If any downloading issue, please contact BLIIoT sales team


4.1.2 Search for Port Number

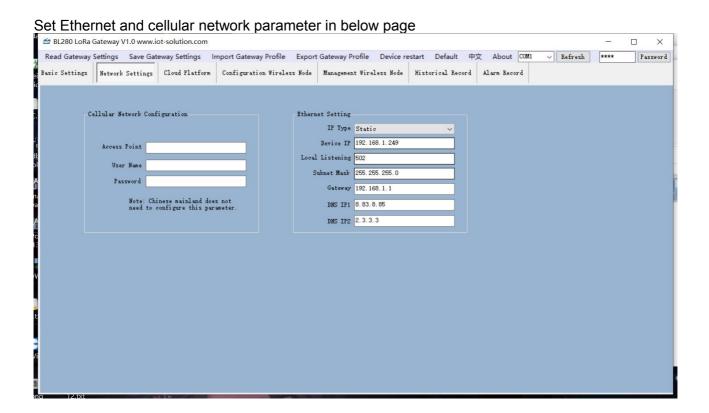
Right click My Computer, then click Property-Device Manager-Port, if it's connected normally and USB driver is installed successfully, it will show as below:(Gateway port number is COM5)



4.1.3 Login to Configuration Software


Select connected serial port , input password (default is 1234 and it's filled automatically), click login to enter below main page. If login is not successful, please check USB connection, password and port number.

4.2 Basic Settings

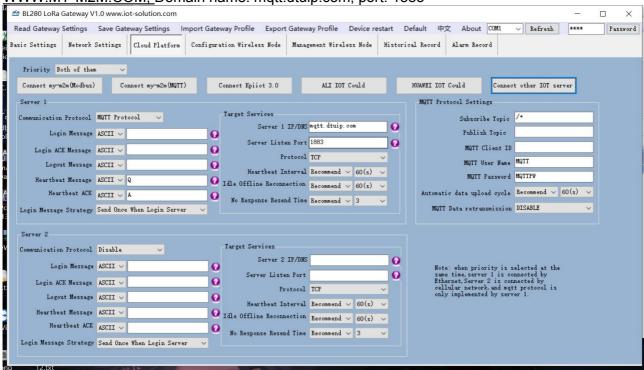

In this page, user can quickly configure and get basic device information, including device model, version,password, time, ID,description,etc

Basic Information				
Item	Description	Default		
Device ID	Range: 1~247, device ID is used to identify the gateway in monitoring center	1		
Gateway Device	Input custom device name	Null		
Read Device Time	Read current gateway time			
Write Local Time	Write local compute time to gateway			
Change Password	Click it to change password			
Original Password	Original device password	Null		
New Password	Input new password	Null		
Confirm Password	Confirm new password	Null		
Gateway Device Version	Click it to read device model, version, IMEI, cellular network signal strength			
Model No.	Device Model			
Version	Firmware version			
IMEI	Unique IMEI number of the communication module			
Battery Voltage	Backup battery voltage			
Cellular Network Signal Strength	Cellular network signal strength, range 0-31, If the value is 0, please make sure SIM card is inserted properly and charged.			
Working Frequency Range	Range: 1~99, gateway and node must be in the same communication frequency range.	1		
Node Reporting Cycle	Node data uploading cycle, Range: 2~50(minute)	1		

4.3 Ethernet & Cellular Network Configuration

Network Configuration				
Item	Description	Default		
APN	Mobile service provider APN access point	NI. II		
(Acess Point Name)	(not necessary in China)	Null		
User Name	APN user name (not necessary in China)	Null		
Password	APN password (not necessary in China)	Null		
IP Mode	Set static / dynamic IP	Static		
Device IP	Gateway S281 IP Address	Null		
Local Listening Port	Device port number as TCP/UDP server, can be custom, range 0-65536	Null		
Subnet Mask	Current Subnet Mask	Null		
Router IP	Current Router IP Address	Null		
DNS server 1	Current DNS server 1 IP address	Null		
DNS server 2	Current DNS server 2 IP address	Null		

Note: this gateway can be used as TCP server and TCP client.


4.4 Cloud Platform

This page is to configure the parameters for connecting device to internet. With rich automatic handshake login packages, custom heartbeat packages and logout function, it can be connected to

monitoring software or cloud for two-way communication through GPRS/3G/4G and Ethernet. Below are the options:

- 1) Modbus RTU Protocol, i.e. Modbus RTU over TCP, transfer Modbus RTU protocol in TCP link to realize two-way communication between gateway and host computer. For example, input cloud platform www.my-m2m.com, Domain name: modbus.dtuip.com, port: 6651
- 2) Modbus TCP protocol, i.e.add TCP to the beginning and end of standard RTU protocol message to realize two-way communication between gateway and host computer. For example, input cloud platform www.my-m2m.com, Domain name: mbtcp.dtuip.com, port: 6655
- 3) MQTT protocol, i.e. execute MQTT protocol in TCP link to realize two-way communication between gateway and host computer. The advantage of MQTT is data will be saved in cache if network is lost and re-transmitted once network recovers. For example, input cloud platform: www.my-m2m.com, Domain name: mqtt.dtuip.com, port: 1883

Communication Protocol @Cloud Platform				
Item	Description	Default		
Priority	Set network priority, include Ethernet first, Cellular network first and both of them	Ethernet first		
King Pigeon Cloud V2.0 (Modbus)	Set parameters for server 1 to connect King Pigeon cloud V2.0 (Modbus RTU Over TCP)			
King Pigeon Cloud V2.0 (MQTT)	Set parameters for server 1 to connect King Pigeon cloud V2.0 (MQTT)			
King Pigeon Cloud V3.0	Set parameters for server 1 to connect King Pigeon cloud V3.0 (Modbus RTU Over TCP)			
Alibaba Cloud	Set parameters for server 1 to connect Alibaba Cloud(via private key)			
HUAWEI Cloud	Set parameters for server 1 to connect HUAWEI Cloud(via private key)			
Other Cloud Platform	Custom parameters for connecting to required servers			

Note:

- (1) Priority setting, if Ethernet first is selected, it will use Ethernet for connecting server 1. If cellular network first is selected, celluar network will be used for connecting server 1. If both network is selected, server 2 will started, device supports both servers. Ethernet and cellular network will be used at the same time.
- (2) If connecting device to King Pigeon cloud V2.0 or V3.0, please contact BLIIoT sales team to get device serial number and put it in login package box

Login Package@Cloud Platform				
Item	Description Defa			
Communication protocol	Select communication protocol, include Prohibited, Modbus RTU Over TCP, MQTT	Disabled		
Login Message	Server side login handshake message	Null		
Login ACK Message	If Login Acknowledgement Message is input, server must give response within 10s. Otherwise device will continue to send login message. Once login message sending times reach limit, device will be offline and then re-connect immediately. After device go offline 3 times, it will re-connect to service after the set interval	Null		
Logout Message	If it's set and server sends logout message, device will go offline	Null		
Heartbeat Message	If it's set, device will send heartbeat message frequentlyaccording to the set interval	Null		
Heartbeat ACK Message	If it's set, server will send Heartbeat Acknowledge Message within 6s. Otherwise it will be timeout and device will send heartbeat message for reconnecting. Once the re-connecting times reach limit, device will go offline and reconnect immediately. After device goes offline 3 times, it will re-connect after the set interval	Null		
Login Message Strategy	Login Message Sending Rule	Send once login to server		
Protocol	Choose TCP, UDP	TCP		
Heartbeat Interval	Heartbeat message sending interval, unit: second	60		
Idle Offline Re-connection	Once device is connected to server but no response is received from server within certain period, device will disconnect with server and re-connect after the set duration. Range: 0-65535, unit: second	120		
No Response Resend Time	Set the times of device re-connecting to server if it goes offline. Range: 1-9. Unit: times. If it's not connected to server after the reconnecting times reaches limit, cellular network will automatically restart.	3		

Server Setting@ Cloud Platform			
Item Description Default			
Server IP/ Domain Name	Target Server IP or Domain Name Nul		
Server Port	Target Server Port	Null	

MQTT Setting@Cloud Platform			
Item	Description	Default	
Subscription Topic	Subscription topic when device receives control data	Null	
Publish Topic	Topic of device publishing messages	Null	

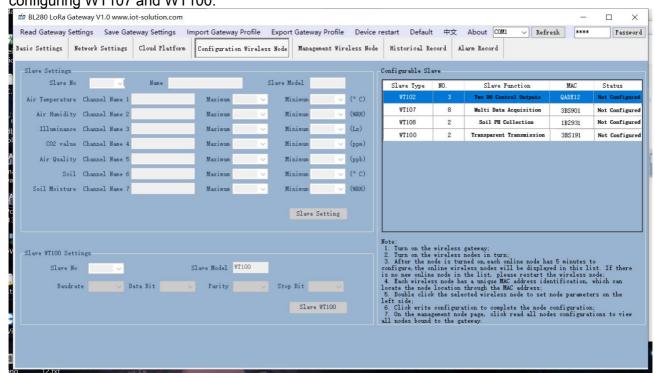
MQTT Device ID	Device serial number, unique identification N		
MQTT User Name	User Name of device to publish topic in proxy server	oxy server Null	
MQTT Password	Password of device to publish topic in proxy server	opic in proxy server Null	
Data Uploading Interval	Device data uploading interval, minimum 10s		
MOTT Data	If it's enabled, device data will be saved in cached if		
MQTT Data Re-transmission	network disconnect and re-transmitted once network	Disabled	
IXE-transmission	recovers		

Note: MQTT protocol can only be realized in Server 1

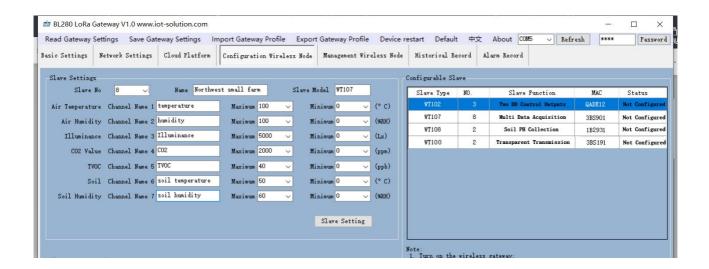
S281 only support connecting to Alibaba cloud and HUAWEI Cloud without certificate

Alibaba Cloud Parameter Setting@Cloud Platform			
Item	Description	Default	
Communication Protocol	Select Enable or Disable	Disabled	
ProductKey	Set the same ProductKey as Alibaba cloud (IOT platform—device—click DeviceSecret to view it)	Null	
DeviceName	Set the same DeviceName as Alibaba cloud (IOT platform—device—click DeviceSecret to view it)	Null	
DeviceSecret	Set the same DeviceSecret as Alibaba Cloud (IOT platform—device—click DeviceSecret to view it)	Null	
Region	Select Alibaba Cloud server location, default is China East 2 (Shanghai)	Null	
Uploading Interval	Set interval of uploading device data to cloud, minimum 10s	60s	

Note: Alibaba cloud IOT model is under development. Thus datapoint must be added one by one. When adding datapoint, make sure the identification mark is the same as the MQTT mark in configuration software. For example, if MQTT identification mark of node WT107 ID 1 temperature value is TEMP1, set the same datapoint mark TEMP1 in Alibaba cloud. For other marks refer to: Appendix C MQTT Application


HUAWEI Cloud Parameter Setting@Cloud Platform			
Item	Description	Default	
Communication Protocol	Select Enable or Disable	Disable	
DeviceID	Set the same Device ID as HUAWEI Cloud (IOT Platform-device-device ID)	Null	
DeviceSecret	Set the same DeviceSecret as HUAWEI Cloud when creating devices	Null	
Service ID	Set the same Service ID as HUAWEI Cloud (IOT Platform-Product-Service ID)	Null	
Server IP/Domain Name	Input IP of connecting HUAWEI cloud via MQTT (Enter console-click overview to get server IP)	Null	
Server Port	HUAWEI IOT platform port, fixed 1883	1883	
Data Uploading Interval	Interval of data uploading to cloud, minimum 10s	60s	

Note: Please make sure the datapoint identification mark in HUAWEI Cloud is the same as the MQTT mark in configuration software. For example, if MQTT mark of node WT107 ID 1 temperature value is TEMP1, then set TEMP1 in HUAWEI cloud as datapoint mark. For other marks refer to Appendix C MQTT Application


4.5 Wireless Node Configuration

Below page is to configure node parameters. Before configuration, the node must be powered on.Make sure node and gateway are in the same network, i.e. frequency range: default is 1. Once node is started, it will be shown on the right. Each node has 5 minutes to be configured. If newly added node is not listed on the right, please restart it. Each node has its own unique MAC address. Node can be found by its MAC address. There are 12 types of nodes, WT100-WT111. WT100 is transparent transmission node and the rest are data collection nodes. Below is the example of configuring WT107 and WT100.

Steps to add multiple-data node WT107:

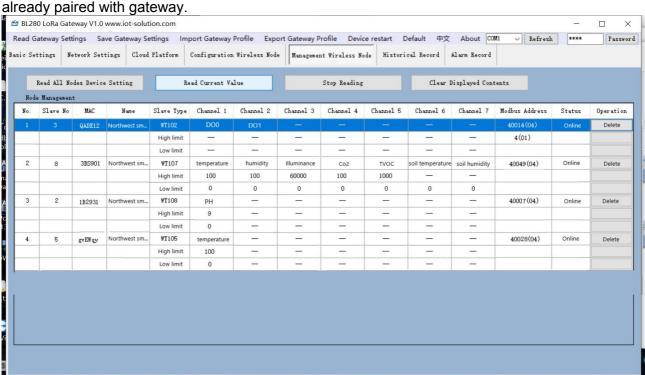
- 1. Start node WT107. LED indicator will flicker once and be off. Once it has paired with gateway, LED indicator will be steady on
- 2. Find node WT107 on the right and double click it to configure
- 3. Input node WT107 parameter on the left and click Slave Setting to save it. Once node receives configuration data, LED indicator will be flickering for 2s
- 4. After 5 minutes' configuration, LED indicator will be off and flicker once every 8s.

WT Series Data Collection Node@Wireless Node Configuration			
Item	Description Def		
Node Number	Node Identification Number	1	
Input Data Type	Air Temperature	0	
Input Data Type	Air Humidity	0	
Input Data Type	Light Intensity	0	
Input Data Type	CO2	0	
Input Data Type	TVOC (air quality)	0	
Input Data Type	Soil Temperature	0	
Input Data Type	Soil Humidity	0	
Channel Name	Can be custom	Null	
Maniman	If current value reaches highest limit, system will		
Maximum	trigger alarm and save alarm record	0	
B. d	If current value reaches lowest limit, system will	II a	
Minimum	trigger alarm and save alarm record	0	
Slave Setting	Click it to save node configuration		

Note: This is the example of node WT107 configuration. For other nodes, refer to Appendix B Register Address

Steps to add node WT100 (RS485 Transparent Transmission):

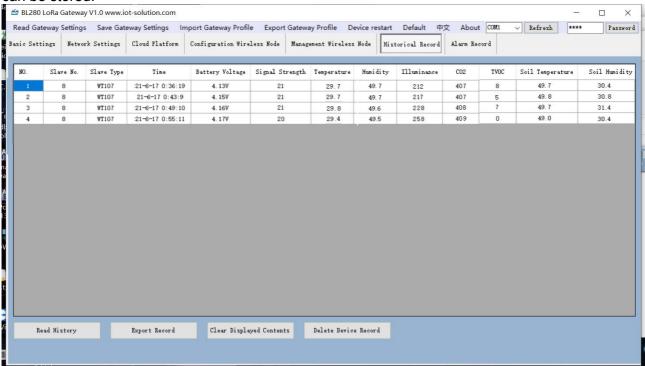
- 1. After WT100 is started, LED indicator will flicker once and be off
- 2. Select WT100 in the right list and double click it to enter configuration
- 3. Input WT100 parameters on the left and click Slave Setting to save it. Once node receives the configuration, LED indicator will be flickering for 2s
- 4. After 5 minutes configuration, LED indicator will be off. Every time transparent data is received, LED indicator will flicker.



WT100 RS485 Transparent Transmission@ Wireless Node Confguraiton		
Item	Description	Default
Slave No.	Node Identification Number	1
Baud Rate	Select from "2400", "4800", "9600", "14400", "19200", "38400", "57600", "115200"	9600
Data Bit	Select "8 Bit", "9 Bit"	8
Parity Bit	Select"None", "Even", "Odd"	None
Stop Bit	Select "1 Bit", "2 Bit"	1
Salve WT100	Click Slave WT100 to save configuration setting	

4.6 Wireless Node Management

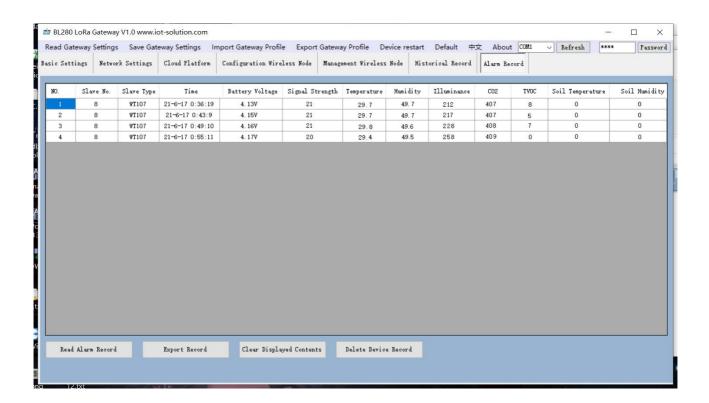
User can view all node setting and register information. Below page is the information of nodes



Wireless Node Management			
Item Description Default			
Read All Nodes Device Setting	Click to read all configured node information		
Read Current Register Value	Click to monitor all nodes' register value (exclude WT100)		
Delete	Delete nodes		

4.7 Historical Record

Below page is historical record display. Active reporting data of nodes is saved. Max 2000 records can be stored.


Historical Record				
Item	Description De			
Read History	Display all historical records in the table			
Clear Displayed Contents	Clear contents from the table			
Export Record	Export historical records to .XML format file			
Delete Device Record	Delete all historical records and alarm events. Start to save data from the first new record			

Note: The temperature and other data in above table is only the data collected by WT107. If it's not WT107, the data will be different. For example, if it's WT108, then the value is soil PH. For other data type, please refer to <u>Appendix B Register Address</u>

4.8 Alarm Record

Below page is to view alarm records. It's used to save alarm events when the collected value is higher or lower than the limit. Max 500 records can be saved.

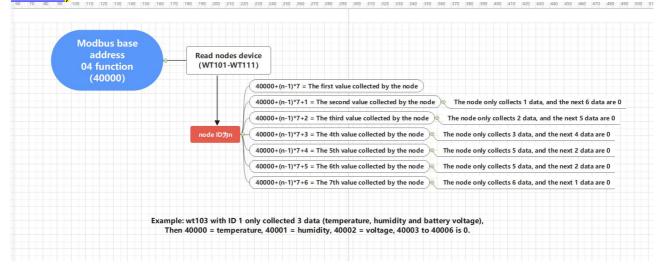
Alarm Record			
Item Description Def			
Read Alarm Record	Display all alarm records in the table		
Clear Displayed Contents	Clear the contents from current table		
Export Record	Export alarm records to XML format file		
Delete Device Record	Delete all alarm records and start to save data from the first new records.		

Note: The temperature and other data in above table is only the data collected by WT107. If it's not WT107 (WT101 and WT102 have no alarm records), the data will be different. For example, if it's WT108, then the value is soil PH. For other data type, please refer to <u>Appendix B Register Address</u>

5 SMS Command

This device supports remote configuration, inquiry and control with SMS. For details, please refer to Appendix A SMS Command List, Below are the tips:

- 1. Gateway default password is 1234 and can be changed with SMS to ensure safety
- 2. Password in SMS commands refers to device password, for example 1234, directly input it
- 3. "+" in SMS commands is not command message. Please don't add any space or character
- 4. Make sure capital letters and lowercase letters are correctly edited in SMS commands. For example, password is PWD, not pwd



- 5. If password is correct but command is wrong, gateway will return message" wrong command format, please confirm", then please check the spelling, letter format and other details
- 6. If password is wrong, there will be return message
- 7. If there's no return message from gateway once it receives SMS command, please check whether password is correct and signal is normal.

6 Communication Protocol

Gateway S281 support Modbus TCP, Modbus RTU and MQTT. It can be connected to Alibaba Cloud, HUAWEI Cloud, King Pigeon Cloud, SCADA an other host computers through cellular and Ethernet network

It has various nodes for collecting different data. Below is the diagram of node and register mapping relationship (For node collecting sequence, please refer to <u>Appendix B Register Address</u>)

6.1 Modbus RTU Protocol

(1) Function code 04H(0x04): read input register (read node WT107, data is air temperature, humidity, light intensity, CO2, TVOC and soil temp & humi)

Message format sent from master server station:

Content	Byte QTY	Data Sent	Remark	
Device Address	1	01H	Device 01, range: 1-247, same as the set address	
Function Code	1	04H	Read input register	
Register Starting Address	2	9C 40H	Range: 9C40H-9C46 (40000-40006) refer to below note for address relations. Data sending sequence: high byte will be in front of low byte, for example 0010, sequence is 00 10	

Page 29 of 53

Qty of Read Register	7	00 07H	Range:0000H-0006H,read corresponding gateway parameter, data is sent in sequence. For example, 0008, sequence: 00 08
CRC Check	2	9E 4CH	Check according to actual requirement, low byte is in front

Note: Gateway S281 supports max 50 nodes. Up to 350 register data can be read. If more than that, data reading will be invalid. Reading register starting address is 40000(9C40H). The corresponding node register is (n-1)*7+40000 (n is device ID). If WT107 ID is 5, then it's needed to read 7 data consecutively starting from 40035

Return Message Format:

Content	Byte Qty	Data Sent	Remark
Device Address	1	01H	Device 01, must be the same as data sent
Function Code	1	04H	Read input register
Returned Byte Size	1	0EH	Data: 2N, N is the number of viewing register number
Returned Data	14	01 31 02 44 00 C8 01 9A 00 06 01 C2 01 F4H	From left to right, every 2 bytes refer to one gateway register parameter 0131H: 305, temperature 30.5 C; 0244H: 580, humidity 58.0 %RH; 00C8H: 200, light intensity 200 ILL; 019AH: 410, Co2 concentration 410 ppm; 0006H: 6, TVOC concentration 6 ppb; 01C2H: 450, soil temperature 45.0 C; 01F4H: 580, soil humidity 50.0 %RH.
CRC Check	2	B3 B6H	Check according to actual requirement, low byte is in front

(2) Function code 01H(0x01): read coil status (read WT102, 2 DO for control output)

Message Format sent from server master station:

Content	Byte Qty	Data Sent	Remark
Device Address	1	01H	Device 01, range: 1-247, same as the set address
Function Code	1	01H	Read coil status
Start Address of Register	2	00 00H	Read 2 channel digital output status of node WT102 with ID 1. For details, please refer to below remark.
QTY of Read Register	10	00 0AH	Range: 0000H-0009H, read 2 channels digital output status of node WT102 with ID 1-5
CRC Check	2	BC 0DH	Check according to actual status. Low byte is in front.

Note: Maximum 100 registers of digital output can be read. If more than that, it will be invalid. Each WT102 has 2 digital output and its Modbus address relation is(ID-1)*2. If the starting address of node WT102 with ID 1 is 0, then the starting address of node WT102 with ID 2 is 2.

Return Message Format:

Content	Byte Qty	Data Sent	Remark
Device Address	1	01H	Device 01, same as data sent
Function Code	1	01H	Read coil status
Returned Byte Size	1	02H	Data: N / 8 + N % 8, N is the quantity of register to be inquired.
Returned Data	2	01 00	Returned data sequence. Low byte is in front of high byte
CRC Check	2	B8 6CH	Check according to actual requirement, low byte is in front

(3) Function code 02H(0x02): read discrete input status (Read node WT101, 4 digital inputs)

Message Format Sent from server master station:

Content	Byte Qty	Data Sent	Remark
Device Address	1	01H	Device 01, range: 1-247, same as the set address
Function Code	1	02H	Read discrete input status
Starting Address of Register	2	00 00H	Read 4 digital inputs of WT101 with ID 1. For more details, refer to below remark.
Qty of Read Register	8	00 08H	Range: 0000H-0007H, read 4 digital inputs of WT101 with ID 1 and 2
CRC Check	2	79 CCH	Check according to actual requirement, low byte is in front

Remark: Max 200 registers of digital input status can be read. If more than that, it's invalid. Each WT101 has 4 digital inputs. The corresponding Modbus address is (ID-1)*4, for example, if the starting address of node WT101 with ID 1 is 0, then the starting address of ID 2 is 4.

Return Message Format:

Content	Byte Qty	Data Sent	Remark
Device Address	1	01H	Device 01, same as data sent
Function Code	1	02H	Read discrete input status
Returned Byte Size	1	01H	Data: N / 8 + N % 8, N is the quantity of register to be inquired.
Returned Data	2	F0	Every 8 bit of input data form a byte. Low byte is in front.
CRC Check	2	A1 CCH	Check according to actual requirement, low byte is in front

6.2 Modbus TCP Protocol

(1) Function code 04H(0x04): read input register (Read node WT107, data is air temperature, air humidity, light intensity, CO2, TVOC and soil temperature & humidity)

Message Format Sent from server master station:

Content	Byte Qty	Data Sent	Remark
Counter of command	1	00 00H	Every time data package is sent, the
Counter of command	1	00 000	counter value will be added by 1
Fixed character	1	00H	Fixed format, fixed character
Fixed character	1	00H	Fixed format, fixed character

Page 31 of 53 Shenzhen Beilai Technology Co., Ltd.

Following message size	1	00 06H	Fill based on following byte size
Following message size	1	00 0011	Fill based off following byte size
Device Address	1	01H	Device 01, range: 1-247, same as set address
Function Code	1	04	Read input register
Starting Address of Register	2	9C 40H	Range: 9C40H-9C46(40000-40006), address definition is in below remark. Data sequence: high byte is in front. For example, 0010, the sequence is 00 10
Qty of Read Register	7	00 07H	Range: 0000H-0006H, read corresponding gateway parameter. Data sequence: high byte is in front. For example, 0008, sequence is 00 08

Note: Gateway S281 can support maximum 50 nodes. Up to 350 registers can be read. If more than that, it's invalid. Starting address of reading register is 40000(9C40H), the corresponding node register is (n-1)*7+40000(n is device ID), for example if WT107 ID is 5, then read 7 consecutive data from 40035

Return Message Format

Content	Byte Qty	Data Sent	Remark
Command Counter	1	00 00H	Same as data sent
Command Counter	1	00 0011	Same as data sem
Fixed character	1	00H	Fixed format, fixed character
Fixed character	1	00H	Fixed format, fixed character
Following message size	1	00 11H	Same as following message byte size
Following message size	1	01H	Device 01 same as data cent
Device Address	1	UIH	Device 01, same as data sent
Function Code	1	04H	Read input register
Return Byte Size	1	0EH	Data: N / 8 + N % 8, N is the qty of register
Return Byte Size	'	OLIT	to be inquired
			From left to right, every 2 bytes represents
		01 26	a gateway register parameters
		02 2B	0126H: 294, temperature 29.4 ℃;
		00 44	022BH: 555, humidity 55.5 %RH;
Return Data	14	01 90	0044H: 68, light intensity 68 lx;
		00 0A	0190H: 400, Co2 concentration 400 ppm
	01 E0 01 F4H	01 E0	000AH: 10, TVOC concentration 10 ppb;
		01 F4H	01E0H: 480, soil temperature 48.0 ℃;
			01F4H: 580, soil humidity 50.0 %RH

(2) Function code 01H(0x01): read coil register (read node WT102 with 2 digital outputs)

Message Format sent from server master station:

Wessage Format sent from server master station.				
Content	Byte Qty	Data Sent	Remark	
Command Counter	1	00 00H	Every time a data package is sent, the	
Command Counter	1	00 00H	counter value will be added by 1	
Fixed Character	1	00H	Fixed format, fixed character	
Fixed Character	1	00H	Fixed format, fixed character	
Following Message Size	1	00.06H	Come as following massage byte size	
Following Message Size	1	00 06H	Same as following message byte size	

Device Address	1	01H	Device 01, range: 1-247, same as set address
Function Code	1	01	Read coil register
Starting Address of Register	2	00 00H	Read 2 digital output status of WT102 with ID 1. More details can be viewed from below remark.
Qty of Read Register	10	00 0AH	Range: 0000H-0009H, read 2 digital output status of WT102 with ID 1-5

Remark: Maximum 100 registers of digital output can be read each time. If more than 100 registers, it will be invalid. Each WT102 has 2 digital outputs. The corresponding Modbus address is (ID-1)*2, for example, the starting address of WT102 with ID 1 is 0, then the starting address of WT102 with ID 2

Return Message Format

Content	Byte Qty	Data Sent	Remark
Command Counter	1	00 00H	Camp as data sent
Command Counter	1	00 0011	Same as data sent
Fixed Character	1	00H	Fixed format, fixed character
Fixed Character	1	00H	Fixed format, fixed character
Following Message Size	1	00 05H	Same as following message byte size
Following Message Size	1	01H	Device 01, same as data sent
Device Address	1	UIH	
Function Code	1	01H	Read coil register
Return Byte Size	1	02H	Data: 2N, N is the qty of register to be inquired
Return Data	2	01 00H	Every 8 bits form 1 byte. Low byte is in front.

(3) Function code 02H(0x02): read discrete input status (read node WT101 with 4 digital inputs)

Message Format Sent from server master station:

Content	Byte Qty	Data Sent	Remark	
Command Counter	1	00 00H	Every time a data package is sent, the	
Command Counter	1	00 0011	counter value will be added by 1	
Fixed Character	1	00H	Fixed format, fixed character	
Fixed Character	1	00H	Fixed format, fixed character	
Following Message Size	1	00 06H	Come so following manages buts size	
Following Message Size	1 00 06H		Same as following message byte size	
Device Address	1	01H	Device 01, range 1-247, same as set address	
Function Code	1	02	Read discrete input status	
Starting Address of Register	2	00 00H	Read 4 digital input status of WT101 with ID 1. More details can be viewed from below remark.	
Qty of Read Register	10	00 08H	Range: 0000H-0007H, read 4 digital inp status of WT101 with ID 1&2	

Note: Maximum 200 registers of digital inputs can be read each time. If more than that, it's invalid. Each WT101 has 4 digital inputs. The corresponding Modbus address is (ID-1)*4, for example, if the starting address of WT101 with ID 1 is 0, then the starting address of WT101 with ID 2 is 4

Return Message Format

Content	Byte Qty	Data Sent	Remark	
Command Counter	1	00 00H	Same as data sent	
Command Counter	1	00 00H	Same as data sem	
Fixed Character	1	00H	Fixed format, fixed character	
Fixed Character	1	00H	Fixed format, fixed character	
Following Message Size	1	00 04H	Same as following message byte size	
Following Message Size	1	01H	Dovice 01 same as data cent	
Device Address	1	וטוח	Device 01, same as data sent	
Function Code	1	02H	Read discrete input status	
Return Byte Size	1	02H	Data: 2N, N is qty of register to be inquired	
Return Data	2	F0H	Every 8 bit forms 1 byte, low byte is in front	

6.3 MQTT Protocol

Gateway S281 supports standard MQTT protocol, support Modbus RTU to MQTT and can be connected to cloud platform easily. More details can be viewed from Appendix C MQTT Application

7 Firmware Upgrading

This device has modular design. If there's any network upgrading from telecommunication service provider, it's not necessary to change the complete hardware but only communication module.

Firmware can be upgraded through USB port. If any requirement for firmware upgrading, please contact us.

8 Warranty Term

1) This device has one year warranty from the date of purchase. Any material or manufacturing quality problem can be repaired for free.

Any issues caused by human damage or wrong operation are beyond warranty range.

9 Technical Support

Shenzhen Beilai Technology Co., Ltd.

Tel: 0755-29451836

Website: https://www.bliiot.com/

10 Appendix A SMS Command List

Change Pasword

Action	Command	Return Message
Set	Old password+P+new password	This is new password.
Set		Please save it.

Note: default password is 1234 and new password must be 4 digits

Set Device ID

Action	Command	Return Message
Set	Password+IDxx	ID: xx
Inquire	Password+IDE	ID: XX

Note: ID is fixed character, range: 1-247, default is 1

Set Device Time

Action	Command	Return Message
Set	Password+DxxxxxxTyyyy	xxxxxxxxxxx (year,
Inquire	Password+D	month, date, hour,
		minute)

Note: xxxxxx is year month date and yyyy is hour minute. Each property has 2 bits. If it's 1 bit, then add 0 in the front. For example, set device time to be 12:30, Oct 8, 2016, the command is 1234D161008T1230

Inquire Device Status

Action	Command	Return Message
Action	Password+EE	Time: Device ID: IMEI: Cellular Network Signal Strength: External Power Supply Normal/Power Lost Model Number: Version:
		Description:

Set Network Priority

Action	Command	Return Message
Set	Password+NET	Notwork Priority:
Inquire	Password+NET+x	Network Priority:

Note: x is 0-2, 0 is Ethernet first, 1 is cellular first, 2 is both Ethernet and cellular network. For example, set Ethernet first, the command is 1234NET0

Set Cellular Network Parameter

Action	Command	Return Message
Set	Password+AP+Access Point+#+User	APN:
Set	Name+#+Password	User Name:
Inquire	Password+AP	Password

f 53 Shenzhen Beilai Technology Co., Ltd.

Delete	Password+APDEL	

Inquire Cellular Network Status

Action	Command	Return Message
Inquiry	Password+GPRSonline	GPRS is online

Set / Enable Network

Action	Command	Return Message
Enable	Cellular network: Password+GPRSON1 Ethernet: Password+ETHON1	GPRS enabled Ethernet enabled
Disable	Password+GPRSOFF Password+ETHOFF	GPRS disabled Ethernet disabled
Inquire Network Status	Password+INTE Note: INTE is fixed character	Same as above

Set Ethernet Server

Action	Command	Return Message
Set	Password+ETHIP+ IP address+*+port	Local IP:
Set	Note: ETHIP, * are fixed characters	Port:
Inquire	Password+ETHIP	Same as above
Doloto	Password+ETHIPDEL	Same as above (i.e.
Delete	Password+ETHIPDEL	value is null)

Set Device Restart

Action	Command	Return Message
Set	Password+REBOOT	Device is rebooted
		successfully

Reset to Factory Setting

Action	Command	Return Message
Set	Password+RESET	Device is returned to factory setting successfully.

Inquiry Register Current Value

Action	Command	Return Message
Inquire	Password+RCU+xx-yy-zz	R1: xxxxx (Y)
		R2: xxxxx (Y)
		Rx: xxxxx (N)
		Note: Y refers to
		normal, N means alarm

Note: RCU are fixed characters. xx , yy, zz.....represent node addresses, range: 01-50, each address has 2 bits. Single or multiple registers can be inquired. For example, inquire device 1 and 8. The command is 1234RCU0108.

Delete Node

Action	Command	Return Message
Set	Password+DELDEVxx	Node: xx, deleted
		successfully

Note: xx is device ID, range: 01-50. Only single node can be deleted each time.

Inquire Node Communication Status

Action	Command	Return Message
Inquire		Communication is
	Password+RCUC	normal: xx, yy
	Communicatio	Communication
		abnormal: zz

Note: Above is to inquiry communication status between node and gateway.

11 Appendix B Register Address

(1) S281 registers are used for mapping and storing different node data. Input register, read only, support function code 04

Mapping Address		Data Name①		Data	Remark2
Hexadecimal	Decimal	Data Nar	Data Name		Remark
9C 40	40000		Air Temperature	16 bit int	Y=X/10
9C 41	40001		Air Humidity	16 bit int	Y=X/10
9C 42	40002		Light Intensity	16 bit int	Y=X
9C 43	40003	Node 1	CO2 Concentration	16 bit int	Y=X
9C 44	40004		TVOC Concentration	16 bit int	Y=X
9C 45	40005		Soil Temperature	16 bit int	Y=X/10
9C 46	40006		Soil Humidity	16 bit int	Y=X/10
9C 47	40007		Air Temperature	16 bit int	Y=X/10
9C 48	40008		Air Humidity	16 bit int	Y=X/10
9C 49	40009		Light Intensity	16 bit int	Y=X
9C 4A	40010	Node 2	CO2 Concentration	16 bit int	Y=X
9C 4B	40011		TVOC Concentration	16 bit int	Y=X
9C 4C	40012		Soil Temperature	16 bit int	Y=X/10
9C 4D	40013		Soil Humidity	16 bit int	Y=X/10
9D 97	40343		Air Temperature	16 bit int	Y=X/10
9D 98	40344		Air Humidity	16 bit int	Y=X/10
9D 99	40345	Node	Light Intensity	16 bit int	Y=X
9D 9A	40346	50	CO2 Concentration	16 bit int	Y=X
9D 9B	40347] 30	TVOC Concentration	16 bit int	Y=X
9D 9C	40348		Soil Temperature	16 bit int	Y=X/10
9D 9D	40349		Soil Humidity	16 bit int	Y=X/10

Note: 1) There are total 11 types of node data. Different nodes collect different data as below

Node Model	Data Name	Data Type	Remark
WT101	DI-0	16 bit int	Y=X
	DI-1	16 bit int	Y=X
	DI-2	16 bit int	Y=X
	DI-3	16 bit int	Y=X
WT102	DO-0	16 bit int	Y=X

	DO-1	16 bit int	Y=X
WT103WT104	Air Temperature	16 bit int	Y=X/10
	Air Humidity	16 bit int	Y=X/10
	Battery Voltage	16 bit int	Y=X/10
WT105WT106	Air Temperature	16 bit int	Y=X/10
	Battery Voltage	16 bit int	Y=X/10
	Air Temperature	16 bit int	Y=X/10
	Air Humidity	16 bit int	Y=X/10
	Light Intensity	16 bit int	Y=X
WT107	CO2Concentration	16 bit int	Y=X
	TVOCConcentration	16 bit int	Y=X
	Soil Temperature	16 bit int	Y=X/10
	Soil Humidity	16 bit int	Y=X/10
WT108	Soil PH	16 bit int	Y=X/100
WT109	Soil EC	16 bit int	Y=X
	Soil Temperature	16 bit int	Y=X/10
	Soil Humidity	16 bit int	Y=X/10
	Soil PH	16 bit int	Y=X/100
WT110	Soil EC	16 bit int	Y=X
	Soil Nitrogen	16 bit int	Y=X
	Soil Phosphorus	16 bit int	Y=X
	Soil Potassium	16 bit int	Y=X
	Temperature	16 bit int	Y=X/10
	Humidity	16 bit int	Y=X/10
WT111	Light Intensity	16 bit int	Y=X
	Wind Speed	16 bit int	Y=X/10
	Wind Direction Value	16 bit int	Y=X
	Wind Direction	16 bit int	Y=X

② In remark column, the definitions of the variables as as below:

WT111 wind direction and wind direction value definitions are as below:

Wind Direction	Wind Direction Value	Corresponding Direction	
(0-7 Classes)	(0-360°)	Corresponding Direction	
0	0°	North wind	
1	45°	Northeast wind	
2	90°	East wind	
3	135°	Southeast wind	
4	180°	South wind	
5	225°	Southwest wind	
6	270°	West wind	

Y: true value

X: current register value

[&]quot;Y=X" means "true value=current register value",

[&]quot;Y=X/10" means "true value=current register value/10",

[&]quot;Y=X/100" means "true value =current register value/100".

(2) Node WT102 has 2 digital outputs for controlling devices. S281 gateway can read and write it with function codes 01/05/15

Mapping Address		Data Nam	•①	Data	Remark
Hexadecimal	Decimal	Data Nam	Data Name①		Remark
00	0	Node 1	1 st digital output data DO-0	Bool	1:Relay closed0: Relay open
01	1	Noue I	2 nd digital output data DO-1	Bool	1:Relay closed0:Relay open
02	2	Nodo 2	1 st digital output data DO-0	Bool	1:Relay closed0:Relay open
03	3	Node 2	2 nd digital output data DO-1	Bool	1:Relay closed0:Relay open
62	98	Node 50	1 st digital output data DO-0	Bool	1:Relay closed0:Relay open
63	99		2 nd digital output data DO-1	Bool	1:Relay closed0:Relay open

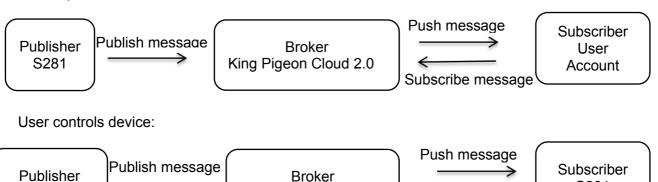
Note: ① above is only for node WT102, if it's not WT102, the read value is 0. When node ID is n,the corresponding mapping address is (n-1)*2; if it's not WT102 ID, then the read value is 0

(3) Node WT101 has 4 digital inputs. S281 gateway can read it with function code 02

Mapping Address		Data Name(1)		Data	Domonic
Hexadecimal	Decimal	Dala Naii	ie (I)	Type	Remark
00	0		1 st digital input data DI-0		Dry contact
01	1	Node 1	2 nd digital input data DI-1	Bool	External open: 0 External closed: 1
02	2		3 rd digital input data DI-2		Wet contact0-3V: 0
03	3		4 th digital input data DI-3		10-30V: 1
04	4		1 st digital input data DI-0		Dry contact
05	5	Node 2	2 nd digital input data DI-1	Bool	External open: 0 External closed: 1 Wet contact 0-3V: 0
06	6		3 rd digital input data DI-2		
07	7		4 th digital input data DI-3		3-30V: 1
C4	196		1 st digital input data DI-0		Dry contact
C5	197	Node 50	2 nd digital input data DI-1	Bool	External open: 0 External closed: 1
C6	198		3 rd digital input data DI-2	BOOI	Wet contact0-3V: 0
C7	199		4 th digital input data DI-3		10-30V: 1

Note: ① Above is only for node WT101. If it's not WT101, the read value is 0. When node ID is n, the corresponding mapping address is (n-1)*4; if it's not WT101 ID, the read value is 0

12 Appendix C MQTT Application


(1) MQTT Introduction

MQTT is client-server based message publishing/subscription transmission protocol. It is a lightweight, simple, open and easy to implement protocol that can be used in many areas, including constrained environment like M2M and IoT. It has been widely used in satellite link communication sensors, network medical devices, smart home and other small size equipment. MQTT runs through TCP/IP or other network protocols to provide orderly, lossless and bi-directional connection.

(2) MQTT Principle

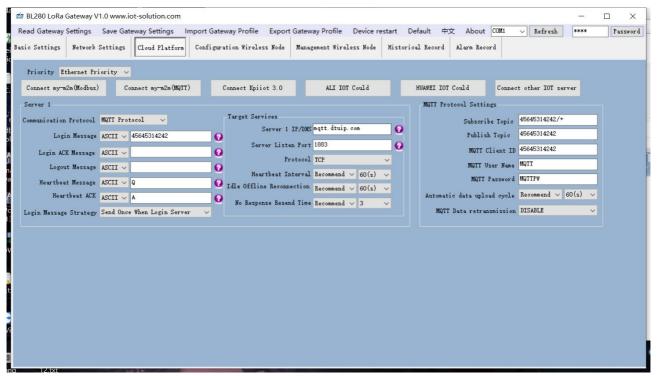
There are 3 identities in MQTT protocol: Publisher, Broker, Subscriber. Both message publisher and subscriber are clients. Message broker is server. Message publisher can be subscriber at the same time. Below is the example of connecting Gateway S281 to King Pigeon Cloud 2.0 via MQTT:

Device publishes I/O data:

King Pigeon Cloud 2.0

(3) Client Configuration

User Account


Below is the example of King Pigeon Cloud 2.0 configuration. For Alibaba Cloud and HUAWEICloud, input the corresponding parameters.

S281

Subscribe message

BUIOT

Wireless Data Acquisition System - LoRa Gateway S281

- 1) Communication Protocol: Select **MQTT** protocol,
- 2) Server IP/Domain Name: Broker server domain name (King Pigeon Cloud 2.0 domain name is **mqtt.dtuip.com)**,
- 3) Server Port: Broker server port (King Pigeon Cloud 2.0 server port is 1883),
- 4) Subscribe Topic: Subscription topic when device receives data from cloud (King Pigeon Cloud 2.0 subscription topic is **Device serial number /+)**
- 5) Publish Topic: The topic of publishing message when device sends data to cloud (King Pigeon Cloud 2.0 Publish Topic is **Device serial number**)
- 6) MQTT Device ID: The only identification mark of device. Can be serial number, device ID, or IMEI code (King Pigeon Cloud 2.0 MQTT Device ID is **Device serial number**)
- 7) MQTT User Name: Account for device to publish topic in broker server (King Pigeon Cloud 2.0 MQTT user name is **MQTT**)
- 8) MQTT Password: Account Password for device to publish topic in broker server (King Pigeon Cloud 2.0 User Password is **MQTTPW**)

Once configuration is done, client will initiate connection to server:

CONNECT: Client sends one CONNECT request message to server

CONNACK: Server responds with a CONNACK message to knowledge connection success

Once connection is established, client can publish or subscribe messages in server. Below is the example of using gateway device and user mobile phone as client:

After gateway device publishes topic in broker server, user can view data on mobile phone through subscription, i.e. gateway device is publisher, user mobile phone is subscriber.

User can also control gateway device through MQTT server publishing topic, i.e. user mobile phone is publisher, gateway device is subscriber.

(4) Data Format of Valid Payload in Device Published Message


```
Publish Topic: device serial number(same as the serial number set in configuration software)
    {
         "sensorDatas": [
             {
                 "flag": "TEMP8",
                                   //read-write mark
                 "value": 288
                                       //data type & value
             },
                 "flag": "HUMI8",
                 "value": 450
             },
                 "flag": "ILLU8",
                 "value": 230
             },
                 "flag": "CO28",
                 "value": 400
             },
                 "flag": "TVOC8",
                 "value": 8
             },
                 "flag": "SOILHUMI8",
                 "value": 456
             },
                 "flag": "SOILTEMP8",
                 "value": 333
             }
         "time": "07:16:17 06/16/2021 UTC",
        //Time mark it's UTC time
         "state": "alarm",
        //Alarm, recovery mark (this mark only appears when there's alarm and data recovery.
Otherwise it's not included in scheduled uploading data)
         "retransmit": "enable"
        //historical data mark (this mark only appears when there's data re-transmission. It's not
  included in real time data)
```

Note:

//read-write mark, character is "flag", following is "read-write mark of node collecting datapoints"

//Data type & value, following are the data types:

- 1. Digital data: data is "switcher", followed by "0"or "1"(0 represents open, 1 represents closed)
- 2. Numeric data: character is "value", followed by "actual value", this data can not be changed or sent to device from cloud

//Time mark: the character is "time", followed by "actual uploading UTC time"

//Alarm & recovery: the character is "state", followed by "alarm" or "recovery" (alarm represents alarm data, recovery represents recovery data)

//Historical data mark: the character is "retransmit", followed by "enable", data during network disconnection will be saved in the device temporarily. Once network is connected, it will be published with "retransmit" mark to represent historical data (MQTT re-transmission function must be enabled in configuration software)

(5) Data Format of Valid Payload in Device Subscribed Message

Note'

//Cloud platform sensor ID: the character is "sensorsID", followed by ID number (ID is automatically generated by cloud platform)

//Data type & value. It has following data types:

- 1. Digital datat: the character is "switcher", followed by "0" or "1"(0 represents open, 1 represents closed)
- 2. Numeric data: the character is "value", followed by "actual value" //Read-write mark, the character is "flag", followed by "read-write mark of IO datapoints" //Mark of message sent from cloud platform: the character is "down", followed by "down", it represents data sent from cloud platform

(6) Read-write Mark of Node Collecting Datapoints

Data Name	Read-write Mark①	Data Type	Read-Write Type	Remark®
Air Temperature	TEMPx	Value	Read only	True Value=Original Value / 10
Air Humidity	HUMIx	Value	Read only	True Value=Original Value / 10
Light Intensity	ILLUx	Value	Read only	True Value=Original Value
Co2 Concentration	CO2x	Value	Read only	True Value=Original Value
TVOC Concentration	TVOCx	Value	Read only	True Value=Original Value
Soil Temperature	SOILTEMPx	Value	Read only	True Value=Original Value / 10
Soil Humidity	SOILHUMIX	Value	Read only	True Value=Original Value / 10

Page 43 of 53

Shenzhen Beilai Technology Co., Ltd.

V1.1

Soil PH	SOILPHx	Value	Read only	True Value=Original Value / 100
Soil EC	SOILECx	Value	Read only	True Value=Original Value
Soil Nitrogen	SOILNx	Value	Read only	True Value=Original Value
Soil Phosphorus	SOILPx	Value	Read only	True Value=Original Value
Soil Potassim	SOILKx	Value	Read only	True Value=Original Value
1st digital output	DOx_0	Switcher	Read & Write	0 is Open, 1 is Closed
2 nd digital output	DOx_1	Switcher	Read & Write	0 is Open, 1 is Closed
1 st digital input	DIx_0	Switcher	Read only	0 is Open, 1 is Closed
2 nd digital input	DIx_1	Switcher	Read only	0 is Open, 1 is Closed
3 rd digital input	DIx_2	Switcher	Read only	0 is Open, 1 is Closed
4 th digital input	DIx_3	Switcher	Read only	0 is Open, 1 is Closed
Node power voltage②	ВАТх	Value	Read only	True Value=Original Value / 10

Note:

- ①lower case letter x is node ID, for example "TEMPx" means TEMP1. It's the temperature of node with ID 1
- 2 Node power voltage only exists in node WT103, WT104, WT105 and WT106
- 3 In Alibaba Cloud and HUAWEI Cloud, the true value=actual value

Different nodes collect different data. Details can be viewed from Appendix B Register Address

13 Appendix D LoRa Node Introduction

WT100 (RS485 Transparent Transmission Node)

Introduction:

Micropower Wireless LoRa Node WT100 is serial port transparent transmission module. It's based on LoRa spread spectrum modulating technology with half-duplex communication. It has MCU with receiving-transmission program for transparent data transmission. Users don't need to do programming. It can be used easily on the site without configuration.

Remote transmission node WT100 can connect RS485 devices or sensors to Gateway S281 and cloud to collect data from cloud Multiple MUltiple WT100s can form a group network. Master will collect data from other WT100.

It's commonly applied in remote meter reading, access control system, wireless data communication, industrial data collection, remote control telemetry, security system, robot control, etc.

Product Features

- Support 3.3V~24VDC power supply
- Effective forward error correction coding technology and frequency hopping mechanism for anti-interference and low bit error rate
- Unique physical address to be identified easily from other nodes
- Communication parameters can be flexibly configured
- Receiving sensitivity can be up to -148dBm and max transmission power can be +20dBm
- Anti-electromagnetic interference port design to ensure reliable RS485 data transmission.

Parameter	Specification
	1 st pin red: power+
	2 nd pin black: power-
Wire Definition	3 rd pin white: RS485+
	4 th pin yellow RS485-
	5 th pin green: GND
Power Supply	DC12V (can be $3.3V\sim24V$)
Power Consumption	Standby: 30mW, data communication:500mW
Serial Port Parameter	Baud rate: 9600, data bit:8,parity bit:none,1;(can be adjusted)
Work Mode	Transparent Transmission
WOIR WIOGE	(Multiple WT100s can communicate with each other)
Serial Port Cache	200bytes
Communication	402MHz~500MHz, 860MHz-930MHz,
Frequency	860MHz-930MHz860MHz-930MHz
Working Environment	Temperature-10∼+70℃; humidity ≤95%
LoRa Antenna	External SMA antenna with inner pin and screw thread
LORA Antenna	433MHz/868MHz/915MHz optional
Waterproof Grade	IP65
Outline Dimension	101mmX69mmX39mm
Packing List	Node WT100x1; 12V Power Adapter x1; LoRa Antennax1

WT101(4 Digital Input Data Collection Node)

Introduction

Wireless Node WT101 has 4 digital input channel. It works with LoRa Gateway S281, supporting wet contact and dry contact(default is wet contact). Collected data is sent to S281 automatically. It can be used in various industrial automation monitoring system.

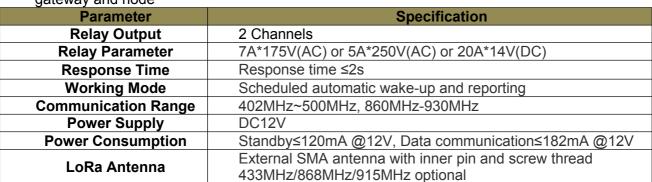
Product Features:

- Private LoRa communication protocol for simple, safe and reliable connection
- Parameters can be set in S281 configuration software
- Unique physical address to be identified from other nodes easily
- Smart transmitting mechanism to auto adjust next transmission according to node number once it's configured with Gateway
- Automatic re-connecting to gateway once it's offline to prevent Open

connection between gateway and node

Parameter	Specification			
Digital Input	4 channels			
	DIN default is wet contact. For dry contact please put remark in the order			
	Dry Contact:			
	External open: internal data is 0			
DIN Parameters	External closed: internal data is 1:			
	Wet Contact:			
	Logic 0: 0-3VDC			
	Logic 1: 10-30VDC (DI COM ~ DI)			
Work Mode	Automatic reporting data			
Communication Frequency	402MHz~500MHz, 860MHz-930MHz			
Power Consumption	Standby≤38mA @12V, data communication≤100mA @12V			
LoRa Antenna	External SMA antenna with inner pin and screw thread			
LONA AIITEIIIIA	433MHz/868MHz/915MHz optional			
Communication Range	2km(open area)			
Waterproof Grade	IP65			
Mounting	Wall-Mounting, DIN Rail Mounting			
Outline Dimension	101mmX69mmX39mm			
Packing List	Node WT101 x1; LoRa Antennax1			

WT102 (2 Relay Output Control Node)


Introduction

Wireless Remote Control Node WT102 has 2 Relay outputs. It works with LoRa Gateway S281 to realize remote wireless control. It's widely used in various industrial automation control systems.

Product Features:

- Private LoRa communication protocol for simple, safe and reliable connection
- Parameters can be set in S281 configuration software
- Unique physical address to be identified from other nodes easily
- Smart transmitting mechanism to auto adjust next transmission according to node number once it's configured with Gateway

 Automatic re-connecting to gateway once it's offline to prevent Open connection between gateway and node

Communication Range	2km(open area)
Waterproof Grade	IP65
Outline Dimension	101mmX69mmX39mm
Packing List	WT102Node x1; LoRa Antennax1

WT103 (AM2301 Temperature & Humidity Data Collection Node)

Introduction

Remote Wireless LoRa Node WT103 is a highly-effective, low power consumption and long range communication module. It works with LoRa Gateway S281 to collect air temperature & humidity data and automatically send it to S281. With high quality sensing core, it's compliant with WMO (World Meteorological Organization) regulations. It's widely used in weather, environment, agriculture, breeding industry and warehouse area

Product Features:

- Private LoRa communication protocol for simple, safe and reliable connection
- Parameters can be set in S281 configuration software
- Unique physical address to be identified from other nodes easily
- Low power consumption, scheduled automatic wake-up and reporting data from sleep mode
- Smart transmitting mechanism to auto adjust next transmission according to node number once it's configured with Gateway
- Real-time battery voltage can be sent to prevent data loss caused by battery shortage

Parameter	Specification
Temperature Range	-40 \sim +80 \degree , Precision:±1 \degree
Humidity Range	0~100%RH, Precision:±4.5%
Working Mode	Scheduled automatic wake-up and reporting
Communication Range	402MHz~500MHz, 860MHz-930MHz
Power Supply	#7 battery*3 (3.3V∼5V)
Power Consumption	Sleep mode ≤10µA@5V, data communication≤120mA @5V
LoRa Antenna	External SMA antenna with inner pin and screw thread 433MHz/868MHz/915MHz optional
Communication Range	2km(open area)
Waterproof Grade	IP65
Outline Dimension	101mmX69mmX39mm
Packing List	WT103Node x1; LoRa Antennax1

WT104 (AM2401 Temperature & Humidity Data Collection Node)

Introduction

Remote Wireless LoRa Node WT104 is a highly-effective, low power consumption and long range communication module. It works with LoRa Gateway S281 to collect air temperature & humidity data and automatically send it to S281. With high quality sensing core, it's compliant with WMO (World Meteorological Organization) regulations. It's widely used in

Shenzhen Beilai Technology Co.,

Page 47 of 53

weather, environment, agriculture, breeding industry and warehouse area

Product Features:

- Private LoRa communication protocol for simple, safe and reliable connection
- Parameters can be set in S281 configuration software
- Unique physical address to be identified from other nodes easily
- Low power consumption, scheduled automatic wake-up and reporting data from sleep mode
- Smart transmitting mechanism to auto adjust next transmission according to node number once it's configured with Gateway
- Real-time battery voltage can be sent to prevent data loss caused by battery shortage

Parameter	Specification
Temperature Range	-40∼+80℃, Precision:±0.3℃
Humidity Range	$0{\sim}100\%$ RH, Precision: $\pm4.5\%$
Working Mode	Scheduled automatic wake-up and reporting
Communication Range	402MHz~500MHz, 860MHz-930MHz
Power Supply	#7 battery*3 (3.3V∼5V)
Power Consumption	Sleep mode ≤10µA@5V, data communication≤120mA @5V
LoRa Antenna	External SMA antenna with inner pin and screw thread 433MHz/868MHz/915MHz optional
Communication Range	2km(open area)
Waterproof Grade	IP65
Outline Dimension	101mmX69mmX39mm
Packing List	WT104Node x1; LoRa Antennax1

WT105 (DS18B20 Temperature Data Collection Node)

Introduction:

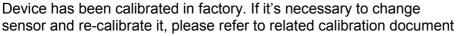
Wireless LoRa Node WT105 use sensor DS18B20 to collect temperature data. DS18B20 is a commonly used temperature sensor with compact size, low cost, strong anti-interference and high precision features. It can be used in cable tunnel, blast furnace, boiler, computer room, greenhouse, clean workshop, ammunition warehouse and other small size area temperature monitoring.

Product Features:

- Private LoRa communication protocol for simple, safe and reliable connection
- Parameters can be set in S281 configuration software
- Unique physical address to be identified from other nodes easily
- Low power consumption, scheduled automatic wake-up and reporting data from sleep mode
- Smart transmitting mechanism to auto adjust next transmission according to node number once it's configured with Gateway
- Real-time battery voltage can be sent to prevent data loss caused by battery shortage

Parameter	Specification
Temperature Range	-40∼+80℃, Precision:±0.3℃
Working Mode	Schedule automatic wake-up and reporting
Communication Range	402MHz~500MHz, 860MHz-930MHz
Power Supply	#7 battery*3 (3.3V~5V)

Shenzhen Beilai Technology Co., Ltd.



Power Consumption	Sleep mode≤10µA@5V, data communication≤120mA @5V
LoRa Antenna	External SMA antenna with inner pin and screw thread
	433MHz/868MHz/915MHz optional
Communication Range	2km(open area)
Waterproof Grade	IP65
Outline Dimension	101mmX69mmX39mm
Mounting	Wall-Mounting, Horizontal placement
Packing List	WT105Node x1; LoRa Antennax1

WT106 (PT100 Temperature Data Collection Node)

Introduction:

Wireless LoRa Node WT106 use PT100 thermocouple to monitor temperature. It's a widely used component for measuring temperature $-50\,^{\circ}$ C \sim 600 $^{\circ}$ C with high precision, stability and anti-interference capability. PT100 can convert the sensed temperature to analog value It's used in industrial, electronics, machine tool, metallurgy, petroleum and chemical industries.

Product Features:

- Private LoRa communication protocol for simple, safe and reliable connection
- Parameters can be set in S281 configuration software
- Unique physical address to be identified from other nodes easily
- Automatic shifting from Working Mode to Low Power Consumption Mode based on power voltage
- Smart transmitting mechanism to auto adjust next transmission according to node number once it's configured with Gateway

Real-time battery voltage can be sent to prevent data loss caused by battery shortage

Parameter	Specification
Temperature Range	-50~+200°C; Precision ±0.2°C
Working Mode	Scheduled automatic wake-up and reporting; (Voltage≤6V) Normal Working Mode; (voltage ≥6V)
Communication Range	402MHz~500MHz, 860MHz-930MHz
Power Supply	#7 battery*3 (3.3V∼5V) or 12VDC power supply
Power Consumption	Lower power consumption mode: sleep mode≤20µA @5V, working≤140mA @5V Normal Working Mode: Standby≤30mA @12V, data communication≤140mA @5V
LoRa Antenna	External SMA antenna with inner pin and screw thread 433MHz/868MHz/915MHz optional
Communication Range	2km(open area)
Waterproof Grade	IP65
Outline Dimension	101mmX69mmX39mm
Mounting	Wall-Mounting; Horizontal placement
Packing List	WT106Node x1; LoRa Antennax1; 12VDC power adapter(Optional)

WT107 (Multiple Environmental Data Collection Node)

Introduction

Wireless LoRa Node WT107 is used to monitor multiple environmental data. It collects air temperature & humidity, light intensity, CO2, TVOC and soil temperature & humidity. It's mainly used for environmental condition monitoring in smart greenhouse, orchard, garden, etc.

Product Features:

- Private LoRa communication protocol for simple, safe and reliable connection
- Parameters can be set in S281 configuration software
- Unique physical address to be identified from other nodes easily
- Smart transmitting mechanism to auto adjust next transmission according to node number once it's configured with Gateway
- Automatic re-connecting to gateway once it's offline to prevent Open connection between gateway and node

Parameter	Specification
Temperature Range	-40∼+125℃, Precision:±0.5℃
Humidity Range	0∼100%RH, Precision:±5%
Light Intensity Range	1~65535lx, Precision:±20%
CO2 Measurement Range	400~60000ppm Range: 400~1479ppm Precision: 1ppm, Range:1479~5144ppm Precision: 3ppm, Range:5144~17597ppm Precision: 9ppm Range:17597~60000ppm Precision: 31ppm
TVOC Measurement Range	0~60000ppb Range: 0~2008ppb Precision:1ppb, Range: 2008~11110ppb Precision: 6ppb, Range: 11110~60000ppb Precision: 32ppb
Soil Temperature Range	-40∼+80°C, Precision:±0.5°C
Soil Humidity Range	0~100%RH, Precision:0~53%为±3%,53%~100%为±5%
Working Mode	Scheduled automatic reporting
Communication Range	402MHz~500MHz, 860MHz-930MHz
Power Supply	DC12V
Power Consumption	Standby≤83mA @12VData communication≤145mA @12V
LoRa Antenna	External SMA antenna with inner pin and screw thread 433MHz/868MHz/915MHz optional
Communication Range	2km(open area)
Waterproof Grade	IP65
Outline Dimension	101mmX69mmX39mm
Packing List	WT107Node x1; LoRa Antennax1

WT108 (Soil PH Value Collection Node)

Introduction:

Wireless LoRa Node WT108 is used to collect soil PH value. It works with LoRa Gateway S281. Once it's configured, the

Shenzhen Beilai Technology Co., Lt

Page **50 of 53**

https://www.bliiot.com/

collected data is sent to S281 automatically. Premium sensing core is used for high precision and stable output. It's commonly used for soil PH monitoring in scientific experiment, irrigation, greenhouse, orchard and foodstuff storage area.

Product Features:

- Private LoRa communication protocol for simple, safe and reliable connection
- Parameters can be set in S281 configuration software
- Unique physical address to be identified from other nodes easily
- Smart transmitting mechanism to auto adjust next transmission according to node number once it's configured with Gateway
- Automatic re-connecting to gateway once it's offline to prevent Open connection between gateway and node
- High anti-corrosion, electrolyte resistance and waterproof features to ensure it can be used in various soil for long time sensing

Parameter	Specification
Soil PH Measurement Range	$0{\sim}$ 14PH, Precision:0.01PH
Working Mode	Scheduled automatic reporting
Communication Range	402MHz~500MHz, 860MHz-930MHz
Power Supply	DC12V
Power Consumption	Standby≤44mA @12VData communication≤106mA @12V
LoRa Antenna	External SMA antenna with inner pin and screw thread
	433MHz/868MHz/915MHz optional
Communication Range	2km(open area)
Waterproof Grade	IP65
Outline Dimension	101mmX69mmX39mm
Packing List	WT108Node x1; LoRa Antennax1

WT109 (Soil EC Data Collection Node)

Introduction:

Wireless LoRa Node WT109 is used to collect soil EC value, i.e. electrical conductivity. It works with LoRa Gateway S281. Once it's configured, the collected data is sent to S281 automatically. Premium sensing core is used for high precision and stable output. It's commonly used for soil EC monitoring in scientific experiment, irrigation, greenhouse, orchard and foodstuff storage area.

Product Features:

- Private LoRa communication protocol for simple, safe and reliable connection
- Parameters can be set in S281 configuration software
- Unique physical address to be identified from other nodes easily
- Smart transmitting mechanism to auto adjust next transmission according to node number once it's configured with Gateway
- Automatic re-connecting to gateway once it's offline to prevent Open connection between gateway and node
- High anti-corrosion, electrolyte resistance and waterproof features to ensure it can be used in various soil for long time sensing

Parameter	Specification
	·

Soil FC Massurement Banco	0∼2000us/cm,	
Soil EC Measurement Range (Electrical Conductivity)	Range: 0~1000us/cm Precision: ±3%,	
(Electrical Conductivity)	Range: 1000~2000us/cm Precision: ±5%	
Working Mode	Scheduled automatic reporting	
Communication Range	402MHz~500MHz, 860MHz-930MHz	
Power Supply	DC12V	
Power Consumption	Standby≤44mA @12VData communication≤106mA @12V	
LoRa Antenna	External SMA antenna with inner pin and screw thread 433MHz/868MHz/915MHz optional	
Communication Range	2km(open area)	
Waterproof Grade	IP65	
Outline Dimension	101mmX69mmX39mm	
Packing List	WT109Node x1; LoRa Antennax1	

WT110 (Soil Moisture Content Data Collection Node)

Introduction:

Wireless LoRa Node WT110 is used to collect various soil parameters. It mainly monitors soil moisture contents, including soil temperature & humidity, soil PH, soil EC, soil Nitrogen, soil Phosphorus and soil Potassium. It works with LoRa Gateway S281. Once it's configured, the collected data is sent to S281 automatically. Premium sensing core is used for high precision and stable output. It's commonly used for soil parameters collection in scientific experiment, greenhouse, orchard, water sewage and foodstuff storage area.

Product Features:

- Private LoRa communication protocol for simple, safe and reliable connection
- Parameters can be set in S281 configuration software
- Unique physical address to be identified from other nodes easily
- Smart transmitting mechanism to auto adjust next transmission according to node number once it's configured with Gateway
- Automatic re-connecting to gateway once it's offline to prevent Open connection between gateway and node
- High anti-corrosion, electrolyte resistance and waterproof features to ensure it can be used in various soil for long time sensing
- Multiple-parameters can be collected for evaluating soil quality easily

Parameter	Specification
Soil Temperature Range	-40∼+80℃, Precision:±0.5℃
Soil Humidity Range	0~100%RH, Precision:0~53%为±3%,53%~100%为±5%
Soil PH Range	0∼14PH, Precision:0.01PH
	$0\sim$ 2000us/cm,
Soil EC Range	Range: 0~1000us/cm Precision: ±3%,
	Range: 1000~2000us/cm Precision:±5%
Soil Nitrogen Range	0∼1999mg/kg, Precision:±2%F.s
Soil Phosphorus Range	0∼1999mg/kg, Precision:±2%F.s
Soil Potassium	0∼1999mg/kg, Precision:±2%F.s
Working Mode	Scheduled automatic reporting

Page 52 of 53

Shenzhen Beilai Technology Co., Ltd.

V1.1

Communication Range	402MHz~500MHz, 860MHz-930MHz
Power Supply	DC12V
Power Consumption	Standby≤120mA @12VData communication≤182mA @12V
LoRa Antenna	External SMA antenna with inner pin and screw thread
	433MHz/868MHz/915MHz optional
Communication Range	2km(open area)
Waterproof Grade	IP65
Outline Dimension	101mmX69mmX39mm
Packing List	WT110Node x1; LoRa Antennax1

WT111 (Multiple-Parameter Collection Node)

Introduction

Remote Wireless LoRa Node WT111 is used to collect various parameters, including air temperature & humidity, wind speed, wind direction and light intensity. It works with LoRa Gateway S281 to collect the data and automatically send it to S281. With high quality sensing core, it's compliant with WMO (World Meteorological Organization) regulations. It's widely used in weather, environment, agriculture, breeding industry, etc.

Product Features:

- Private LoRa communication protocol for simple, safe and reliable connection
- Parameters can be set in S281 configuration software
- Unique physical address to be identified from other nodes easily
- Low power consumption, scheduled automatic wake-up and reporting data from sleep mode
- Smart transmitting mechanism to auto adjust next transmission according to node number once it's configured with Gateway

 Automatic re-connecting to gateway once it's offline to prevent Open connection between gateway and node

Parameter	Specification
Temperature Range	-40 \sim +125 \degree C, Precision:±0.5 \degree C
Humidity Range	$0{\sim}100\%$ RH, Precision: $\pm5\%$
Wind Speed Range	0∼60m/s, Precision:0.3m/s
Wind Direction Range	$0^{\circ}\sim$ 360°, Precision: 3°
Light Intensity Range	$1{\sim}65535$ lx, Precision: $\pm20\%$
Working Mode	Scheduled automatic reporting
Communication Range	402MHz~500MHz, 860MHz-930MHz
Power Supply	DC12V
Power Consumption	Standby≤60mA @12VData communication≤122mA @12V
LoRa Antenna	External SMA antenna with inner pin and screw thread 433MHz/868MHz/915MHz optional
Communication Range	2km(open area)
Waterproof Grade	IP65
Outline Dimension	101mmX69mmX39mm
Packing List	WT111Node x1; LoRa Antennax1